Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Nutrients ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674815

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), described as the most prominent cause of chronic liver disease worldwide, has emerged as a significant public health issue, posing a considerable challenge for most countries. Endocrine-disrupting chemicals (EDCs), commonly found in daily use items and foods, are able to interfere with nuclear receptors (NRs) and disturb hormonal signaling and mitochondrial function, leading, among other metabolic disorders, to MASLD. EDCs have also been proposed to cause transgenerationally inherited alterations leading to increased disease susceptibility. In this review, we are focusing on the most prominent linking pathways between EDCs and MASLD, their role in the induction of epigenetic transgenerational inheritance of the disease as well as up-to-date practices aimed at reducing their impact.


Subject(s)
Endocrine Disruptors , Humans , Endocrine Disruptors/adverse effects , Epigenome , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Fatty Liver/chemically induced , Fatty Liver/genetics , Epigenesis, Genetic , Non-alcoholic Fatty Liver Disease/genetics , Metabolic Diseases/genetics , Metabolic Diseases/chemically induced , Animals
2.
Nutrients ; 16(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674925

ABSTRACT

An ensemble of confounding factors, such as an unhealthy diet, obesity, physical inactivity, and smoking, have been linked to a lifestyle that increases one's susceptibility to chronic diseases and early mortality. The circulatory metabolome may provide a rational means of pinpointing the advent of metabolite variations that reflect an adherence to a lifestyle and are associated with the occurrence of chronic diseases. Data related to four major modifiable lifestyle factors, including adherence to the Mediterranean diet (estimated on MedDietScore), body mass index (BMI), smoking, and physical activity level (PAL), were used to create the lifestyle risk score (LS). The LS was further categorized into four groups, where a higher score group indicates a less healthy lifestyle. Drawing on this, we analyzed 223 NMR serum spectra, 89 MASLD patients and 134 controls; these were coupled to chemometrics to identify "key" features and understand the biological processes involved in specific lifestyles. The unsupervised analysis verified that lifestyle was the factor influencing the samples' differentiation, while the supervised analysis highlighted metabolic signatures. Τhe metabolic ratios of alanine/formic acid and leucine/formic acid, with AUROC > 0.8, may constitute discriminant indexes of lifestyle. On these grounds, this research contributed to understanding the impact of lifestyle on the circulatory metabolome and highlighted "prudent lifestyle" biomarkers.


Subject(s)
Biomarkers , Diet, Mediterranean , Exercise , Life Style , Non-alcoholic Fatty Liver Disease , Humans , Male , Greece/epidemiology , Female , Risk Factors , Case-Control Studies , Middle Aged , Biomarkers/blood , Non-alcoholic Fatty Liver Disease/blood , Adult , Body Mass Index , Metabolome , Smoking , Aged , Metabolomics/methods , Magnetic Resonance Spectroscopy
3.
Nutrients ; 15(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38004127

ABSTRACT

INTRODUCTION: Diet is one of the most important modifiable risk factors associated with cardiovascular health (CH). Research identifying dietary patterns (DPs) through data-driven analysis and reporting associations between DPs and coronary artery disease (CAD) outcomes is rather limited. OBJECTIVE: The aim of the present report was to generate DPs through factor analysis (FA) and to examine their association with CAD risk. METHODS: Participants (n = 1017) consisted of cases diagnosed with CAD (n = 356) and controls (n = 661) drawn from the THISEAS study. Demographic, anthropometric and lifestyle data were collected. Dietary components were generated through FA. Logistic regression analysis was performed to estimate CAD relative risks. RESULTS: FA generated seven dietary components, explaining 53.5% of the total variation in intake. The Western-type DP showed a modest significant association with CAD risk, after controlling for confounders (OR = 1.20; 95% CI = 1.09-1.32, p < 0.001). The vegetarian-type DP was not significantly associated with the likelihood of CAD (OR = 0.95; 95% CI = 0.84-1.04, p = 0.259). DISCUSSION: The Western-type DP was positively associated with CAD risk and the odds were further increased after controlling for confounders. This finding is in concordance with previously reported positive associations between Western patterns and CAD risk. Limited data exist regarding a posteriori DPs and their effect on CAD risk.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/etiology , Case-Control Studies , Greece/epidemiology , Diet/adverse effects , Risk Factors
4.
Mol Metab ; 78: 101810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778719

ABSTRACT

OBJECTIVES: Global cardiometabolic disease prevalence has grown rapidly over the years, making it the leading cause of death worldwide. Proteins are crucial components in biological pathways dysregulated in disease states. Identifying genetic components that influence circulating protein levels may lead to the discovery of biomarkers for early stages of disease or offer opportunities as therapeutic targets. METHODS: Here, we carry out a genome-wide association study (GWAS) utilising whole genome sequencing data in 3,005 individuals from the HELIC founder populations cohort, across 92 proteins of cardiometabolic relevance. RESULTS: We report 322 protein quantitative trait loci (pQTL) signals across 92 proteins, of which 76 are located in or near the coding gene (cis-pQTL). We link those association signals with changes in protein expression and cardiometabolic disease risk using colocalisation and Mendelian randomisation (MR) analyses. CONCLUSIONS: The majority of previously unknown signals we describe point to proteins or protein interactions involved in inflammation and immune response, providing genetic evidence for the contributing role of inflammation in cardiometabolic disease processes.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease , Quantitative Trait Loci/genetics , Blood Proteins , Inflammation/genetics , Cardiovascular Diseases/genetics
5.
Front Endocrinol (Lausanne) ; 14: 1230457, 2023.
Article in English | MEDLINE | ID: mdl-37854184

ABSTRACT

Objective: Obesity poses an increased risk for the onset of Nonalcoholic fatty liver disease (NAFLD). The influence of other factors, such as sex in the incidence and severity of this liver disease has not yet been fully elucidated. Thus, we aimed to identify the NAFLD serum metabolic signatures associated with sex in normal, overweight and obese patients and to associate the metabolite fluctuations across the increasing liver steatosis stages. Methods and results: Using nuclear magnetic resonance (NMR) serum samples of 210 NAFLD cases and control individuals diagnosed with liver U/S, our untargeted metabolomics enquiry provided a sex distinct metabolic bouquet. Increased levels of alanine, histidine and tyrosine are associated with severity of NAFLD in both men and women. Moreover, higher serum concentrations of valine, aspartic acid and mannose were positively associated with the progression of NAFLD among the male subjects, while a negative association was observed with the levels of creatine, phosphorylcholine and acetic acid. On the other hand, glucose was positively associated with the progression of NAFLD among the female subjects, while levels of threonine were negatively related. Fluctuations in ketone bodies acetoacetate and acetone were also observed among the female subjects probing a significant reduction in the circulatory levels of the former in NAFLD cases. A complex glycine response to hepatic steatosis of the female subjects deserves further investigation. Conclusion: Results of this study aspire to address the paucity of data on sex differences regarding NAFLD pathogenesis. Targeted circulatory metabolome measurements could be used as diagnostic markers for the distinct stages of NAFLD in each sex and eventually aid in the development of novel sex-related therapeutic options.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Female , Male , Non-alcoholic Fatty Liver Disease/complications , Metabolomics/methods , Obesity/metabolism , Metabolome
6.
Metabolites ; 13(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623902

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have been linked to changes in amino acid (AA) levels. The objective of the current study was to examine the relationship between MRI parameters that reflect inflammation and fibrosis and plasma AA concentrations in NAFLD patients. Plasma AA levels of 97 NAFLD patients from the MAST4HEALTH study were quantified with liquid chromatography. Medical, anthropometric and lifestyle characteristics were collected and biochemical parameters, as well as inflammatory and oxidative stress biomarkers, were measured. In total, subjects with a higher MRI-proton density fat fraction (MRI-PDFF) exhibited higher plasma AA levels compared to subjects with lower PDFF. The concentrations of BCAAs (p-Value: 0.03), AAAs (p-Value: 0.039), L-valine (p-Value: 0.029), L-tyrosine (p-Value: 0.039) and L-isoleucine (p-Value: 0.032) were found to be significantly higher in the higher PDFF group compared to lower group. Plasma AA levels varied according to MRI-PDFF. Significant associations were also demonstrated between AAs and MRI-PDFF and MRI-cT1, showing the potential utility of circulating AAs as diagnostic markers of NAFLD.

7.
BMC Genomics ; 24(1): 442, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543566

ABSTRACT

BACKGROUND: Expression quantitative trait loci (eQTL) studies provide insights into regulatory mechanisms underlying disease risk. Expanding studies of gene regulation to underexplored populations and to medically relevant tissues offers potential to reveal yet unknown regulatory variants and to better understand disease mechanisms. Here, we performed eQTL mapping in subcutaneous (S) and visceral (V) adipose tissue from 106 Greek individuals (Greek Metabolic study, GM) and compared our findings to those from the Genotype-Tissue Expression (GTEx) resource. RESULTS: We identified 1,930 and 1,515 eGenes in S and V respectively, over 13% of which are not observed in GTEx adipose tissue, and that do not arise due to different ancestry. We report additional context-specific regulatory effects in genes of clinical interest (e.g. oncogene ST7) and in genes regulating responses to environmental stimuli (e.g. MIR21, SNX33). We suggest that a fraction of the reported differences across populations is due to environmental effects on gene expression, driving context-specific eQTLs, and suggest that environmental effects can determine the penetrance of disease variants thus shaping disease risk. We report that over half of GM eQTLs colocalize with GWAS SNPs and of these colocalizations 41% are not detected in GTEx. We also highlight the clinical relevance of S adipose tissue by revealing that inflammatory processes are upregulated in individuals with obesity, not only in V, but also in S tissue. CONCLUSIONS: By focusing on an understudied population, our results provide further candidate genes for investigation regarding their role in adipose tissue biology and their contribution to disease risk and pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Quantitative Trait Loci , Humans , Greece , Gene Expression Regulation , Genotype , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods
8.
Clin Proteomics ; 20(1): 31, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550624

ABSTRACT

BACKGROUND: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. METHODS: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. RESULTS: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). CONCLUSION: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.

9.
Cells ; 12(15)2023 08 03.
Article in English | MEDLINE | ID: mdl-37566073

ABSTRACT

Cardiovascular diseases (CVDs) are the prevalent cause of mortality worldwide. A combination of environmental and genetic effectors modulates the risk of developing them. Thus, it is vital to identify candidate genes and elucidate their role in the manifestation of the disease. Large-scale human studies have revealed the implication of Craniofacial Development Protein 1 (CFDP1) in Coronary Artery Disease (CAD). CFDP1 belongs to the evolutionary conserved Bucentaur (BCNT) family, and to date, its function and mechanism of action in Cardiovascular Development are still unclear. We utilized zebrafish to investigate the role of cfdp1 in the developing heart due to the high genomic homology, similarity in heart physiology, and ease of experimental manipulations. We showed that cfdp1 was expressed during development, and we tested two morpholinos and generated a cfdp1 mutant line. The cfdp1-/- embryos developed arrhythmic hearts and exhibited defective cardiac performance, which led to a lethal phenotype. Findings from both knockdown and knockout experiments showed that abrogation of cfdp1 leads to downregulation of Wnt signaling in embryonic hearts during valve development but without affecting Notch activation in this process. The cfdp1 zebrafish mutant line provides a valuable tool for unveiling the novel mechanism of regulating cardiac physiology and function. cfdp1 is essential for cardiac development, a previously unreported phenotype most likely due to early lethality in mice. The detected phenotype of bradycardia and arrhythmias is an observation with potential clinical relevance for humans carrying heterozygous CFDP1 mutations and their risk of developing CAD.


Subject(s)
Cardiovascular Diseases , Nuclear Proteins , Zebrafish , Animals , Humans , Heart , Nuclear Proteins/metabolism , Phenotype , Wnt Signaling Pathway , Zebrafish/metabolism
10.
Res Sq ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034613

ABSTRACT

Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioral traits and the disease etiology of neuropsychiatric disorders. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-related proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-related traits such as sleeping, smoking, feelings, alcohol intake, mental health, and psychiatric disorders. Integrating with established drug information, we validated 13 out of 13 matched combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets. This consortium effort provides a large-scale proteogenomic resource for biomedical research on human behaviors and other neuro-related phenotypes.

11.
Arthritis Rheumatol ; 75(10): 1781-1792, 2023 10.
Article in English | MEDLINE | ID: mdl-37096546

ABSTRACT

OBJECTIVE: In this study, we aimed to establish the causal effects of lowering sclerostin, target of the antiosteoporosis drug romosozumab, on atherosclerosis and its risk factors. METHODS: A genome-wide association study meta-analysis was performed of circulating sclerostin levels in 33,961 European individuals. Mendelian randomization (MR) was used to predict the causal effects of sclerostin lowering on 15 atherosclerosis-related diseases and risk factors. RESULTS: We found that 18 conditionally independent variants were associated with circulating sclerostin. Of these, 1 cis signal in SOST and 3 trans signals in B4GALNT3, RIN3, and SERPINA1 regions showed directionally opposite signals for sclerostin levels and estimated bone mineral density. Variants with these 4 regions were selected as genetic instruments. MR using 5 correlated cis-SNPs suggested that lower sclerostin increased the risk of type 2 diabetes mellitus (DM) (odds ratio [OR] 1.32 [95% confidence interval (95% CI) 1.03-1.69]) and myocardial infarction (MI) (OR 1.35 [95% CI 1.01-1.79]); sclerostin lowering was also suggested to increase the extent of coronary artery calcification (CAC) (ß = 0.24 [95% CI 0.02-0.45]). MR using both cis and trans instruments suggested that lower sclerostin increased hypertension risk (OR 1.09 [95% CI 1.04-1.15]), but otherwise had attenuated effects. CONCLUSION: This study provides genetic evidence to suggest that lower levels of sclerostin may increase the risk of hypertension, type 2 DM, MI, and the extent of CAC. Taken together, these findings underscore the requirement for strategies to mitigate potential adverse effects of romosozumab treatment on atherosclerosis and its related risk factors.


Subject(s)
Atherosclerosis , Diabetes Mellitus, Type 2 , Hypertension , Myocardial Infarction , Humans , Genome-Wide Association Study , Diabetes Mellitus, Type 2/genetics , Mendelian Randomization Analysis , Atherosclerosis/genetics , Atherosclerosis/complications , Myocardial Infarction/etiology , Risk Factors , Polymorphism, Single Nucleotide
14.
Nutrients ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111103

ABSTRACT

Previous research has allowed the identification of variants related to the vascular endothelial growth factor-A (VEGF-A) and their association with anthropometric, lipidemic and glycemic indices. The present study examined potential relations between key VEGF-A-related single-nucleotide polymorphisms (SNPs), cardiometabolic parameters and dietary habits in an adolescent cohort. Cross-sectional analyses were conducted using baseline data from 766 participants of the Greek TEENAGE study. Eleven VEGF-A-related SNPs were examined for associations with cardiometabolic indices through multivariate linear regressions after adjusting for confounding factors. A 9-SNP unweighted genetic risk score (uGRS) for increased VEGF-A levels was constructed to examine associations and the effect of its interactions with previously extracted dietary patterns for the cohort. Two variants (rs4416670, rs7043199) displayed significant associations (p-values < 0.005) with the logarithms of systolic and diastolic blood pressure (logSBP and logDBP). The uGRS was significantly associated with higher values of the logarithm of Body Mass Index (logBMI) and logSBP (p-values < 0.05). Interactions between the uGRS and specific dietary patterns were related to higher logDBP and logGlucose (p-values < 0.01). The present analyses constitute the first-ever attempt to investigate the influence of VEGF-A-related variants on teenage cardiometabolic determinants, unveiling several associations and the modifying effect of diet.


Subject(s)
Cardiovascular Diseases , Vascular Endothelial Growth Factor A , Humans , Adolescent , Vascular Endothelial Growth Factor A/genetics , Cross-Sectional Studies , Diet , Risk Factors , Cardiovascular Diseases/genetics
15.
Nutrients ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904112

ABSTRACT

The epidemic prevalence of non-alcoholic fatty liver disease (NAFLD), despite extensive research in the field, underlines the importance of focusing on personalized therapeutic approaches. However, nutrigenetic effects on NAFLD are poorly investigated. To this end, we aimed to explore potential gene-dietary pattern interactions in a NAFLD case-control study. The disease was diagnosed with liver ultrasound and blood collection was performed after an overnight fast. Adherence to four a posteriori, data-driven, dietary patterns was used to investigate interactions with PNPLA3-rs738409, TM6SF2-rs58542926, MBOAT7-rs641738, and GCKR-rs738409 in disease and related traits. IBM SPSS Statistics/v21.0 and Plink/v1.07 were used for statistical analyses. The sample consisted of 351 Caucasian individuals. PNPLA3-rs738409 was positively associated with disease odds (OR = 1.575, p = 0.012) and GCKR-rs738409 with lnC-reactive protein (CRP) (beta = 0.098, p = 0.003) and Fatty Liver Index (FLI) levels (beta = 5.011, p = 0.007). The protective effect of a "Prudent" dietary pattern on serum triglyceride (TG) levels in this sample was significantly modified by TM6SF2-rs58542926 (pinteraction = 0.007). TM6SF2-rs58542926 carriers may not benefit from a diet rich in unsaturated fatty acids and carbohydrates in regard to TG levels, a commonly elevated feature in NAFLD patients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Case-Control Studies , Diet , Genetic Predisposition to Disease , Genotype , Liver/metabolism , Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Polymorphism, Single Nucleotide , Triglycerides/metabolism
16.
J Pers Med ; 13(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36836561

ABSTRACT

Quantifying the role of genetics via construction of polygenic risk scores (PRSs) is deemed a resourceful tool to enable and promote effective obesity prevention strategies. The present paper proposes a novel methodology for PRS extraction and presents the first PRS for body mass index (BMI) in a Greek population. A novel pipeline for PRS derivation was used to analyze genetic data from a unified database of three cohorts of Greek adults. The pipeline spans various steps of the process, from iterative dataset splitting to training and test partitions, calculation of summary statistics and PRS extraction, up to PRS aggregation and stabilization, achieving higher evaluation metrics. Using data from 2185 participants, implementation of the pipeline enabled consecutive repetitions in splitting training and testing samples and resulted in a 343-single nucleotide polymorphism PRS yielding an R2 = 0.3241 (beta = 1.011, p-value = 4 × 10-193) for BMI. PRS-included variants displayed a variety of associations with known traits (i.e., blood cell count, gut microbiome, lifestyle parameters). The proposed methodology led to creation of the first-ever PRS for BMI in Greek adults and aims at promoting a facilitating approach to reliable PRS development and integration in healthcare practice.

17.
medRxiv ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36824751

ABSTRACT

Understanding the genetic basis of neuro-related proteins is essential for dissecting the disease etiology of neuropsychiatric disorders and other complex traits and diseases. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-reiated proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-reiated traits as well as complex diseases such as hypertension, high cholesterol, immune-related disorders, and psychiatric disorders. Integrating with established drug information, we validated 13 combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets for diseases and comorbidities. This consortium effort provides a large-scale proteogenomic resource for biomedical research.

18.
Hum Mol Genet ; 32(8): 1266-1275, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36349687

ABSTRACT

Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the genetically determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 248 serum proteins relevant to cardiometabolic processes in 2893 individuals. Meta-analyzing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5× WGS) and Pomak (n = 1537; 18.4× WGS), we detect 301 independently associated pQTL variants for 170 proteins, including 12 rare variants (minor allele frequency < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations but have drifted up in the frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including Mep1b for high-density lipoprotein (HDL) levels, and describe a knock-out (KO) Mep1b mouse model. Our findings furnish insights into the genetic architecture of the serum proteome, identify new protein-disease relationships and demonstrate the importance of isolated populations in pQTL analysis.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Animals , Mice , Phenotype , Whole Genome Sequencing , Blood Proteins/genetics , Genome-Wide Association Study
19.
Nutrients ; 14(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501101

ABSTRACT

Background: The quality of carbohydrate consumed may influence the risk of frailty. In this study, we tested the hypothesis that indices of carbohydrate intake are associated with trajectories of frailty in participants of the Baltimore Longitudinal Study of Aging (BLSA). Methods: Cross sectional and longitudinal analyses were conducted in 1024 BLSA participants to examine the association between usual intake of carbohydrate and frailty index. Seven measures of carbohydrate consumption were estimated using data derived from Food Frequency Questionnaires (FFQs) and examined in association with a 43-item Frailty Index (FI). Results: In cross-sectional analyses, there was a significant, positive association between higher tertiles of total carbohydrate, glycemic load, and non-whole grains and FI. Conversely, higher tertiles of fiber-to-carbohydrate ratio was associated with lower FI. These differences persisted over the follow-up period of up to 13.8 years. Women in the highest tertile of the fiber-to-carbohydrate ratio showed a less steep increase in FI over time. Conclusions: Carbohydrate intake was positively associated with increased frailty risk in the BLSA participants, whereas a higher fiber-to-carbohydrate ratio was related to reduced risk for frailty.


Subject(s)
Frailty , Glycemic Load , Humans , Female , Cross-Sectional Studies , Longitudinal Studies , Dietary Carbohydrates , Glycemic Index
20.
Biol Psychiatry Glob Open Sci ; 2(4): 368-378, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36324647

ABSTRACT

Background: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche. Methods: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (<13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses. Results: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h 2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-onset AN. Conclusions: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...